
Three-Tier Data Warehouse Architecture

- The bottom tier is a warehouse database server that is almost always a relational database system.
- Back-end tools and utilities are used to feed data into the bottom tier from operational databases or other external sources (such as customer profile information provided by external consultants).
- These tools and utilities perform data extraction, cleaning, and transformation.
- The data are extracted using application program interfaces known as **gateways**.

- The middle tier is an OLAP server that is typically implemented using either
- (i) A relational OLAP (ROLAP) model, that is, an extended relational DBMS that maps operations on multidimensional data to standard relational operations.
- (ii) A multidimensional OLAP (MOLAP) model, that is, a special-purpose server that directly implements multidimensional data and operations.

 The top tier is a front-end client layer, which contains query and reporting tools, analysis tools, and/or data mining tools (e.g., trend analysis, prediction, and so on).

Metadata Repository

- Meta data is the data defining warehouse objects. It has the following kinds
 - Description of the structure of the warehouse
 - schema, view, dimensions, hierarchies, derived data defn, data mart locations and contents
 - Operational meta-data
 - data lineage (history of migrated data and transformation path), currency of data (active, archived, or purged), monitoring information (warehouse usage statistics, error reports, audit trails)
 - The algorithms used for summarization
 - The mapping from operational environment to the data warehouse
 - Data related to system performance
 - warehouse schema, view and derived data definitions
 - Business data
 - business terms and definitions, ownership of data, charging policies

Data Warehouse Back-End Tools and Utilities

Data extraction:

get data from multiple, heterogeneous, and external sources

• Data cleaning:

detect errors in the data and rectify them when possible

• Data transformation:

 convert data from legacy or host format to warehouse format

• Load:

 sort, summarize, consolidate, compute views, check integrity, and build indicies and partitions

Refresh

propagate the updates from the data sources to the warehouse

- From the architecture point of view, there are three data warehouse models:
 - I. The Enterprise Warehouse
 - II. The Data Mart
 - III. The Virtual Warehouse.

Enterprise warehouse

- An enterprise warehouse collects all of the information about subjects spanning the entire organization. It provides corporate-wide data integration, usually from one or more operational systems or external information providers, and is cross-functional in scope.
- It typically contains detailed data as well as summarized data, and can range in size from a few gigabytes to hundreds of gigabytes, terabytes, or beyond.
- An enterprise data warehouse may be implemented on traditional mainframes, computer super servers, or parallel architecture platforms.

Data Mart

 A data mart contains a subset of corporate-wide data that is of value to a

specific group of users.

- Data marts are usually implemented on low-cost departmental servers that are UNIX/LINUX- or Windowsbased.
- The implementation cycle of a data mart is more likely to be measured in weeks rather than months or years.
- Depending on the source of data, data marts can be categorized as independent or dependent.
- Independent data marts are sourced from data captured from one or more operational systems or external information providers, or from data generated locally within a particular department or geographic area.
- Dependent data marts are sourced directly from enterprise data warehouses.

Virtual Data Warehouse:

- A virtual warehouse is a set of views over operational databases. For efficient query processing, only some of the possible summary views may be materialized.
- A virtual warehouse is easy to build but requires excess capacity on operational database servers.
- It is popular because is enables business to access & analyze data from operational system

Distributed Data Warehouse

- Distributed data warehouses are those in which certain components of the data warehouse are distributed across a number of different physical databases.
- It usually involves redundant data & as a consequence, most complex loading and updating process.

Data Warehouse Manager

 The warehouse manager is the system component that perform all the operations necessary to support the warehouse management process.

• Operations performed by warehouse manager:

- I. Analyze the data to perform consistency.
- II. Create indexes ,Business view, Partition view against the base data.
- III. Generate new aggregations that may be required.
- IV. Update all existing aggregations.
- V. Transform into a star flake schema.
- VI. Generate the summaries.